Computing Maximal Tori Using LiE and Mathematica

نویسنده

  • Alfred G. Noël
چکیده

This paper describes an algorithm for computing maximal tori of the reductive centralizer of a nilpotent element of an exceptional complex symmetric space. It illustrates also a good example of the use of Computer Algebra Systems to help answer important questions in the field of pure mathematics. Such tori play a fundamental rôle in several problems such as: classification of nilpotent orbits of real Lie groups [13], description of admissible nilpotent orbits of real Lie groups [14], [15], [16], [17], classification of spherical nilpotent orbits [8], [9], determination of component groups of centralizers of nilpotents in symmetric spaces [7], [10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Maximal Tori

We examine the structure of compact Lie groups using a finite maximal abelian subgroup A in place of a maximal torus. Just as the classical notion of roots exhibits many interesting subgroups, so the notion of roots of A exhibits many (rather different) interesting subgroups.

متن کامل

Tori Invariant under an Involutorial Automorphism I

Let G be a connected reductive linear algebraic group defined over an field k of characteristic not 2, θ ∈ Aut(G) an involutional k-automorphism of G and K = Gθ = {g ∈ G | θ(g) = g} the set of fixed points of θ. Denote the set of k-rational points of G by Gk. In this paper we shall classify the K-conjugacy classes of θ-stable maximal tori of G. This is shown to be independent of the characteris...

متن کامل

Connected Finite Loop Spaces with Maximal Tori

Finite loop spaces are a generalization of compact Lie groups. However, they do not enjoy all of the nice properties of compact Lie groups. For example, having a maximal torus is a quite distinguished property. Actually, an old conjecture, due to Wilkerson, says that every connected finite loop space with a maximal torus is equivalent to a compact connected Lie group. We give some more evidence...

متن کامل

Euler Characteristics of the Real Points of Certain Varieties of Algebraic Tori

Let G be a complex connected reductive group which is defined over R, let G be its Lie algebra, and T the variety of maximal tori of G. For ξ ∈ G(R), let Tξ be the variety of tori in T whose Lie algebra is orthogonal to ξ with respect to the Killing form. We show, using the Fourier–Sato transform of conical sheaves on real vector bundles, that the “weighted Euler characteristic” (see below) of ...

متن کامل

The Conjugacy Theorems

We use the theory of differential forms, orientation, and mapping degree to prove that all maximal tori in a compact connected Lie group are conjugate. We also prove that all Lie groups are orientable, and that if G is a compact connected Lie group and T a maximal torus of G, then dim G/T is even.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003